Multiple myeloma (MM) is marked by several genetic abnormalities, including chromosome translocation t(11;14). Overexpression of anti-apoptotic BCL-2 in t(11;14) MM promotes disease progression, prompting clinical use of the BH3 mimetic and BCL-2 inhibitor venetoclax in combination with proteasome inhibitor therapy. Despite high initial response rates and prolonged progression-free survival, patients commonly relapse.

To delineate mechanisms contributing to acquired drug resistance we modeled responses to venetoclax in two highly sensitive MM cell lines (KMS27 and KMS-12PE). Colonies generated from a surviving cell were cultured in high-dose venetoclax to generate monoclonal drug-tolerant expanded persister (DTEP) clones. To determine whether venetoclax resistance in DTEP clones is mediated by transcriptional adaptation via genomic or epigenomic regulation and transcriptional reprogramming, we conducted whole-genome sequencing (WGS) and RNA-seq of the clones. WGS analysis did not show significant differences between parental and resistant clones, but transcriptomic analysis showed shared and unique transcriptome signatures in DTEP clones. Gene set enrichment analysis of the common significantly modulated genes in resistant clones revealed that PKA-ERK-CREB and K-Ras pathway genes were significantly upregulated, whereas apoptotic genes were downregulated in resistant clones compared to parental cells. Importantly, ectopically expressed ERK in venetoclax-sensitive cells conferred a resistant phenotype that was rescued using two specific ERK inhibitors in DTEP clones. These data confirm a key role for ERK activation in acquired venetoclax resistance.

Resistant clones were further characterized by reduced mitochondrial priming assessed by dynamic BH3 profiling, with altered expression of anti-apoptotic regulators including MCL-1, BCL-xL, and BCL-W and the replaced BCL-2: BIM complex by both MCL-1 and BCL-xL. Because these data suggested a functional substitution between anti-apoptotic BCL-2 family members in cells with acquired resistance to venetoclax, we next evaluated if MCL-1 or BCL-xL are codependent in MM cells that are insensitive or resistant to venetoclax. Simultaneous inhibition of MCL-1 (via S63845) or BCL-xL (via A155463) and BCL-2 (via venetoclax) increased BIM release and enhanced cell death in resistant clones (vs single agents), with combination index values < 0.3 in all doses. Upregulation of BCL-xL or MCL-1 in MM cells also mediated primary venetoclax resistance independent of genetic hallmarks (e.g. t [11;14]-translocated cells). Thus, simultaneous inhibition of MCL-1 or BCL-xL and BCL-2 triggered synergistic cytotoxicity in MM cell lines intrinsically resistant to venetoclax.

These data suggest that combined inhibition of BCL-2 and BCL-xL may overcome venetoclax resistance. However, the dependence of BCL-xL in mature platelets had triggered thrombocytopenia for patients under therapy using BCL-xL inhibitor. To further explore the potential clinical application of targeting BCL-xL, we employed novel BCl-2/BCL-xL dual inhibitor, BH3 mimetic pelcitoclax (APG-1252). Using pro-drug strategy for design, pelcitoclax has limited cell permeability during circulation, and was converted to a more potent metabolite APG-1252-M1 in tumors/tissues. APG-1252-M1 was thus used for in vitro cell based assays. We discovered that APG-1252-M1 induced cytotoxicity in MM cell lines intrinsically resistant to venetoclax (regardless of genetic background or BCL-2:BCL-xL ratio) and also significantly reduced MM cell viability in clones with acquired venetoclax resistance, overcoming ERK activation and decreasing BIM sequestration by BCL-xL. In vivo study using pelcitoclax is ongoing and will be presented at the meeting.

In conclusion, we report that venetoclax resistance in MM evolves from outgrowth of persister clones displaying activation of the ERK pathway and a shift in mitochondrial dependency towards BCL-xL, which can potentially be effectively targeted via the novel BCL-2/BCL-xL inhibitor pelcitoclax (APG-1252), which is currently in clinical investigation for solid tumors (NCT03080311).

Disclosures

Deng:Ascentage Pharma Group: Current Employment. Zhai:Ascentage Pharma Group Inc.: Current Employment, Current equity holder in publicly-traded company, Other: Leadership and other ownership interests, Patents & Royalties, Research Funding; Ascentage Pharma (Suzhou) Co., Ltd.: Current Employment, Current equity holder in publicly-traded company, Other: Leadership and other ownership interests, Patents & Royalties, Research Funding. Anderson:Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees. Munshi:Novartis: Consultancy; Janssen: Consultancy; Adaptive Biotechnology: Consultancy; Takeda: Consultancy; Celgene: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm: Consultancy; Oncopep: Consultancy, Current equity holder in publicly-traded company, Other: scientific founder, Patents & Royalties; Amgen: Consultancy; Abbvie: Consultancy; Legend: Consultancy; Pfizer: Consultancy.

Sign in via your Institution